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A Declarative Modeler for B-Spline Curves

Vincent Rossignol and Marc Daniel

Abstract. Declarative modeling aims at producing scenes or objects
from the user's requirements, and be will briefly introduced. We will then
present MDC, a Declarative Modeler for Curves, and the different ways
for describing curves. We mainly focus on our internal model which allows
us to simply manipulate B-splines curves preserving their properties.

§1. Introduction

The current geometric modelers make it possible to construct complex shapes.
Nevertheless, the designer has to describe the studied objects by means of
lists of coordinates, values or geometric primitives. This way of working,
called imperative modeling, is often complex and tedious, even if the associated
mathematical models are powerful.

Our goal through declarative modeling is to permit the creation of shapes
by only providing a set of abstract specifications, generally based on geo-
metric, topological or physical properties. The role of the computer is then to
determine and/or explore the universe of shapes corresponding to the given de-
scription. This approach assumes that the description is not overconstrained.
Moreover, the time used to describe the shape must be less than the time
required to define it by manipulating control points. We are more interested
with a "draft" than a very accurate result. A first attempt at declarative
modeling of a B-spline curve, and preliminary concepts have been described
in [1]. It has led to the new approach proposed in this paper. The method
used for the initial description of the properties required by the designer is
not very important in the current context, but must be as easy as possible. It
can be found in [5]. Declarative modeling is made up of 3 stages:

(1) the description stage, where the user's description is transformed into an
internal description,

(2) the generation stage, where the universe of solution(s) is constructed or
sampled from the internal representation,

(3) the presentation stage, where solution(s) is (are) presented to the user.
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The first stage is very important but will not be detailed here. It will
be just introduced in the next section. References can be found in [4]. The
generation stage transfers properties of a virtual curve into geometrical prop-
erties applied to the data of our mathematical B-spline model. We finally
have to manage a set of control points and a set of geometrical constraints.
The constraints link control points to the properties. We chose to focus the
paper on the presentation of this model and explain how it is set up.

During the presentation stage, the user has the opportunity to browse
through different sets of solutions and to select one of them. Moreover, he/her
can interactively move the control points. But each control point can only be
moved within a restricted region in which the geometrical constraints are
checked.

§2. Curve Description

The description stage in our modeler can be done through 2 methods:

9 The natural description consists of describing the properties of the
curves via pseudo-natural language. For instance, a user can enter a descrip-
tion like: "My curve begins at the top bottom of my workspace", "it has a
linear part in the middle", "it has two inflection points"... The description will
be translated into a semantic graph that represents properties on the curves
which is itself translated into our model presented in next section.

* The visual description is another way to enter properties on the
curve. For handling properties on the curve, the user can visually insert
properties with the mouse on the curve. Then, the computer will ask him
for other information. For instance, suppose that we have a curve which
corresponds to the natural description seen above. If the user wants to insert
a cusp before the linear part, he just has to select this part and asks the
computer to insert a cusp there. Then the modeler will ask for the right and
the left tangencies. In this mode, work is directly achieved on the internal
model.

§3. Constrained B-spline Curves

In this section, we will introduce the internal model for representing and
manipulating the curves. It must have three properties:

(1) be as near as possible to the B-spline model,

(2) contain the constraints yielding the description,

(3) allow the user to manipulate the curve preserving the properties.

3.1 Preliminary definitions

Definition 1. Let P be a point of R 2. We can associate in a formal way a
function of constraint -p with P whose goal is to restrict any part Z of R 2

according to a property (P-p(Z) C Z).
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Let C be a B-spline curve with (n + 1) control points. We actually are
interested in functions of constraint for control points Pi. As these functions
often have a generic formulation, it is sometimes convenient to replace the no-
tation Fpp with F(., i). A function of constraint reduces the region associated
to each constrained point:

Definition 2. A constrained point (P) is a triplet (P, Z,Y) defined by:
P, a point of R2 ,
Z, a convex subset of R 2 ,
Y, a set of functions of constraint applied to P.

We can now consider a B-spline applying this notion of constrained point.
The control polygon is no longer a list of points, but a list of constrained points.
It is named a constrained control polygon (next definition). So, with these
assumptions, the functions of constraint are set up to ensure properties and
to simply manipulate them. An example is proposed in the next section.

Definition 3. Let C be a cubic B-spline. A constrained control polygon is a
sequence of constrained points

I' = (Pi)i( 0,1,...,n},

with
Vi E {0,1,...,n},Pi = (Pi,Zi,-Yj).

Definition 4. Let II be a constrained control polygon on a B-spline C. A
constrained point Pi is called a valid constrained point iff

VF E Y , Zi C (z , i), (i.e. Zi= FZi)),

and Zi 5 0 and PA E Zi. If all the constrained points of 11 are valid, H is also
said to be valid.

3.2 An example of functions of constraint

We choose a simple property "a linear part on the curve". We consider a
cubic B-spline curve with a uniform knot vector. We define 4 functions called:
Lleft, LmidG, LmidL and Lright. We apply these functions on 4 consecutive
points of a constrained control polygon. L1l1, will be defined by

LeLft(Zi, i) = Zi n [Pi+l, Pi+2Pi+l),

where [Pi+l, Pi+2 Pi+1 ) represents the ray defined by

{PIP'+-P = k.Pi+ 2Pi+l, k E R+}.

One can see in Figure 1 that LZeft has been set up to reduce the region as-
sociated with a constrained point. In the same way, we can define LmidG
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Fig. 1. LTet (]R 2 , i), LmidG(IR2
,i) L,-•ht(R 2 , i).

and LmidL for the two middle points, and Lright symmetrically as -ft,
see Figure 2:

LmidG(Zi,i) = Zi n [Pi- 1Pi+1 [, Lm.idL(Zj,i) = Zjn]Pj-IPj+j],

Lright(Zi, i) = Z, n [Pi-1,Pi-2Pi-O)

We can now state the property for the "linear part"

Proposition 1 (Linear functions of constraint). Let C be a cubic B-spline
and II a constrained control polygon on C. Assume that there exists i E
{,1,.., n - 3} and

Lleft E _77i, LmidG E Ji+1, LmidL E .Fi+2, Lright E 'Fi+3.

We assume the knot vector to be uniform for the part of the curve associated
with {Pi,Pi+l,Pi+2 ,Pi+ 3}. Then if H is valid, the curve has a linear part
defined by the line segment [Pi+l, Pi+ 2].

Proof: The above assumptions imply that for a valid control polygon,

Zi =A 0,Pi E [Pi+l,Pi2i'), Zj+j 0 0, Pj+j E [PiPi+2[,

Zi+2 5 0, Pi+2 E]Pj+iPi+ 3], Zi+ 3 # 0, Pi+ 3 E [Pi+2,Pi+IPi+2),

so that points Pi, Pi+l, Pi+ 2, Pi+3 are aligned. We can also notice that this
sequence satisfies

------------"2

PjPi+j = k.Pi+l P+ 2 , Pi+ 2Pi+ 3 = k .Pi+lPi+2, (k, k') (R+)2

Finally, the uniform knot vector yields that the line segment [Pi+±Pi+ 2] is a
part of C. 0

This example is very convenient. But in the same way, we defined func-
tions of constraint for properties like "cusp", "tangencies" etc.. An introduc-
tion to these constraints is available in [6]. This example emphasizes that
an organisation for the functions of constraint exists as described in the next
section.
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3.3 Pieces of control polygon

For defining a linear part on a cubic B-spline, four points are required.
Four functions are defined and inserted into the sets of the constrained control
points. But these four points are not strongly linked. We introduce a structure
linking points: this structure is called Piece of control Polygon (PcP).

Definition 5. Let II be a constrained control polygon on a B-spline curve C.
A Piece of control Polygon is a triplet (I, m, BP) where

* I is the first subscript of the constrained control points associated with
the PcP,

* m is the number of points associated with the PcP,
* BP is a bounding polygon for all the points of the PcP.

We can now define "typed PcP". The type will depend on the property
that the PcP handles. For example, a "linear PcP" will define a linear part
on the curve. In such a case:

"* I is the subscript of the first point associated to the linear PcP,
"* m=4,
"* BP, a bounding polygon for the linear PcP.

Then, if we have

Lieft E -I, LmidG E .FI+1, LmidL E TI+2, Lright E -I+3,

the curve has a linear part located in bounding polygon BP. As discussed
for the linear PcP, different types of PcP can be defined. We have currently
implemented, among others, Inflection PcP (for inflection point), Convex PcP,
Break point PcP. The curve can now be considered as a sequence of PcP.

Property 1 (Partition of the constrained control polygon). Consider a con-
strained control polygon II on a B-spline C and a PcP sequence on this poly-
gon. The PcP sequence must partition K. In other words, each point is in-
cluded in only one PcP. For a sequence (PcPi)iE{o,1,...,nPP)}, we have 1 o = 0,
I + mj = Ij+l, for all j E {0,1,..., npp - 1}, and Invo, + mn,,, - 1 = n.

This property involves two statements. The first is that any point must
be in a PcP. A point not pertaining to a PcP does not define any property, and
is not required. The second is that a point belongs to only one PcP in order to
ensure that no system of constraints on a point will be overconstrained. This
approach does not lead to a theoretical minimum number of points defining a
B-spline curve. Finally, we can say that the shape of the control polygon on
the PcP is based on the shape preversing theorem stated in [2].

3.4 Convexity between two PcP

As the B-spline is defined on H and not only on each PcP, B-spline curve seg-
ments exist, defined by points belonging to different PcP. These pieces, called
"neutral parts", must not introduce unexpected properties. Each neutral part
is defined with a control polygon Qi of four points. In order to avoid unex-
pected properties in a neutral part, 4 functions of constraints, called joining
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functions, are added to preserve the convexity of polygons Qj. They work
similarly to the linear functions seen in Section 3.2. For any PcP, an orien-
tation of the curvature can be associated with each tip of the corresponding
curve segment (clockwise or underclockwise). For two consecutive PcP, the
orientation of the curvature, called signature (signature sig is 1 or -1), must
be the same for both neighbouring tips, so that there is no possible inflection
on a neutral part.

3.5 Constrained B-spline

Definition 6. A constrained B-spline C is defined by
"* k, its order (currently equal to 4 - i.e.,cubic B-splines),
"* n + 1, the number of its constrained control points,
"* T, its knot vector,
"* II, its constrained control polygon,
"* npcp, the number of PcP in H,
"* PcP, the sequence of the Pieces of control Polygon,
"* (sigi)iE{2...n.PP}, the signs for the curvature of the neutral parts.

The first three components correspond to the classical components of a
B-spline curve. The knot vector is considered uniform (t,+l = tn, + 1) except
when a cusp is required on C. In this case, we need to increase the multiplicity
of one knot up to 3. For example, if we need to increase the multiplicity at tp:

tp-1 = t= tp+l, tp- 2 = tp - 2, tp+ 2 = tp + 2.

Otherwise, relation t 1i+ = t, + 1 is preserved.

Definition 7. Given a constrained B-spline C, C is said to be valid if its
constrained control polygon is valid. This definition is very important. If a
constrained B-spline is valid, all the properties imposed through the functions
of constraints are checked. We will also see in the next section that a point is
allowed to move within its associated region, preserving these properties.

BP,

g sign_-i

Fig. 2. A complete example of a constrained B-spline.
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A complete example of a constrained B-spline curve is illustrated in Figure
2. Three properties are required (an "inflection point", a "linear part' and a
"break point"). Region Z5 is the region where point P5 can move. All locations
in this region preserve the inflection point and the linear part. These locations
also ensure that no inflection will be created between the second and the third
PcP. Notice that the first and the last PcP are just here to begin and to end
curve, and do not have exactly the same behavior as the others.

We defined a function 6 which allows us to compute all the regions of
the constrained control polygon. For all constrained points, this function
initializes the associated region to R2 and applies all the constrained functions
to the region. We can finally state:

Property 2 (Move a point within its region). Let V be a valid B-spline, and
i a subscript of a constrained control point (0 • i < n). For all the positions
of Pi in Zi, the properties associated with the functions of constraints are
checked.

This property is one of the most important in the model. When a point
is moved within its associated region, a new valid constrained B-spline can be
obtained by applying function 6 to this new B-spline.

§4. Choosing an Initial Curve

The model we introduced can obtain the different solutions to the designer's
problem. Nevertheless, a first curve has to be computed. This section intro-
duces the main steps of this construction algorithm. To solve the problem, we
assume that a sequence of PcP is given (this sequence has been constructed
during the description stage which is not presented here). Defining the first
curve consists in finding a position for all control points so that the appli-
cation of function 6 leads to a valid constrained B-spline. The construction
algorithm is divided into 3 stages:

1) Choice of the signature vector,
2) Initialization of the regions,
3) Pick of the control point locations.

4.1 Choice of the signature vector

The signature vector describes the curvature between each PcP. As described
in Section 3.4, it is composed of npcp - 1 values in the set {+1, -1}. All
the configurations are not correct. For choosing the values in the vector, we
use relations depending on the types of the PcP (see Figure 3). When all the
relations between the entries of the vector are defined, an instance of these
entries are looked for. The solution is generally not unique. In such a case,
different families of solutions have to be investigated (see Figure 4). It may
happen that the whole set of relations is inconsistent. This corresponds to an
inconsistent description of the curve (for example, "a closed curve with only
one inflection') and no curve can be computed.



360 V. Rossignol and M. Daniel

BP,

End of
the corve

'is,.. is

BP

.is id Uin- pan
BPer11 part Break poin.

Bnirrno 
BP, 

BP,
hocurvei ofg,=(.n

Fig. 3. Relations between signatures.

BP?,

Fig. 4. Another solution than those proposed Figure 2.

4.2 Initialization of the regions
The initialization stage formally sets all the regions to ]R2 , and reduces them
to the bounding polygon of the corresponding PcP. The reduction is then ob-
tained by a geometric construction for each function of constraint, one function
at a time. It may happen that an empty region is produced: the description
of the curve is inconsistent.

4.3 Choice of the control point location

The method cannot be detailed here. It is divided in two stages:
1) The location of the external (i.e., the first and the last) points of each

PcP is determined,
2) The location of the internal points (i.e., all others) are computed.

The first stage is achieved with a specific algorithm. The locations of
the first two external points are choosen. An attempt to find the location of
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Fig. 5. The curve of Figure 2 defined with less control points.

the next point is made. If no valid location is found, backtracking is started.
After a given number of failures, we claim that no solution can be computed,
without determining if there is no solution or if we are unable to find it. But
generally, a result is produced when it exists. The locations of the internal
points are deduced from specific heuristics which never fail.

Once the location of all the control points are computed, applying func-
tion 6 provides the valid constrained B-spline which can be now manipulated.

§5. Curve Improvement

In order to produce more interesting curves, final improvements have to be
applied on the constrained curves. They mainly concern the quality of the
control polygon which takes into account the spatial distribution of points,
and the reduction of the number of control points.

The quality of the control polygon is defined through a measure of quality
(result in interval [0, 1]). An increase of the quality is obtained by moving the
contrained control points one by one.

As we already mentioned, the number of control points can be too large.
Decreasing this number is important while preversing the shape of the curve.
General results have been proposed in [3]. As the important properties on
the curve and the control points handling these properties are known, our
algorithm is easier: first remove non-critical points for the properties, then
optimize the distance between the first curve and the reduced one. An example
is shown in Figure 5.

§6. Conclusion

MDC validates the approach described in this paper. Improvements of the
program are still necessary, but it already provides interesting results. A
declarative modeler does not exclude a classical modeler but can provide a
way for the user to eliminate the most tedious part of the design process.
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The declarative approach has another application: the produced curve
can be considered as a classical B-spline. Its properties can be kept so that
semantic information is available (which is not so far from form features in
CAD). This information would be useful in applying other algorithms after-
wards to the curve.
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